Precessing warped accretion discs in X-ray binaries

نویسندگان

  • G. I. Ogilvie
  • G. Dubus
چکیده

We study the radiation-driven warping of accretion discs in the context of X-ray binaries. The latest evolutionary equations are adopted, which extend the classical alpha theory to time-dependent thin discs with non-linear warps. We also develop accurate, analytical expressions for the tidal torque and the radiation torque, including self-shadowing. We investigate the possible non-linear dynamics of the system within the framework of bifurcation theory. First, we re-examine the stability of an initially flat disc to the Pringle instability. Then we compute directly the branches of non-linear solutions representing steadily precessing discs. Finally, we determine the stability of the nonlinear solutions. Each problem involves only ordinary differential equations, allowing a rapid, accurate and well resolved solution. We find that radiation-driven warping is probably not a common occurrence in low-mass X-ray binaries. We also find that stable, steadily precessing discs exist for a narrow range of parameters close to the stability limit. This could explain why so few systems show clear, repeatable ‘super-orbital’ variations. The best examples of such systems, Her X-1, SS 433 and LMC X-4, all lie close to the stability limit for a reasonable choice of parameters. Systems far from the stability limit, including Cyg X-2, Cen X-3 and SMC X-1, probably experience quasi-periodic or chaotic variability as first noticed by Wijers & Pringle. We show that radiation-driven warping provides a coherent and persuasive framework but that it does not provide a generic explanation for the long-term variabilities in all X-ray binaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped accretion discs and the long periods in X-ray binaries

Precessing accretion discs have long been suggested as explanations for the long periods observed in a variety of X-ray binaries, most notably HerX-1/HZ Her. We show that an instability of the disc’s response to the radiation reaction force from the illumination by the central source can cause the disc to tilt out of the orbital plane and precess in something like the required manner. The rate ...

متن کامل

The Origin of Warped, Precessing Accretion Disks in X-Ray Binaries

The radiation-driven warping instability discovered by Pringle holds considerable promise as the mechanism responsible for producing warped, precessing accretion disks in X-ray binaries. This instability is an inherently global mode of the disk, thereby avoiding the difficulties with earlier models for the precession. Here we follow up earlier work to study the linear behavior of the instabilit...

متن کامل

Impact of reverberation in flared accretion discs on temporal characteristics of X-ray binaries

Observations show that accretion discs in many X-ray binaries are flared. An outer edge of the disc intercepts radiation from the central X-ray source. Part of that radiation is absorbed and reemitted in the optical/UV spectral ranges. However, a large fraction of that radiation is reflected and appears in the broad-band X-ray spectrum as a Compton reflection bump. This radiation is delayed and...

متن کامل

Long - term Properties of Accretion Disks in X - ray Binaries : I . the variable third period in SMC X - 1

Long term X-ray monitoring data from the RXTE ASM and CGRO BATSE reveal that the third (superorbital) period in SMC X-1 is not constant, but varies between 40-60 days. A dynamic power spectrum analysis indicates that the third period has been present continuously throughout the five years of ASM observations. This period changed smoothly from 60 days to 45 days and then returned to its former v...

متن کامل

Reprocessed emission from warped accretion discs with application to X-ray iron line profiles

Flourescent iron line profiles currently provide the best diagnostic for active galactic nuclei (AGN) engine geometries. Here we construct a method for calculating the relativistic iron line profile from an arbitrarily warped accretion disc, illuminated from above and below by hard X-ray sources. This substantially generalises previous calculations of reprocessing by accretion discs by includin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000